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Parameter 

We prove that if/JN is the Sherrington-Kirkpatrick (SK) Hamiltonian and the 
quantity ON= N 1 Z ( S , )  2 converges in the variance to a nonrandom limit as 
N--,  0% then the mean free energy of the model converges to the expression 
obtained by SK. Since this expression is known not to be correct in the low- 
temperature region, our result implies the "non-self-averaging" of the order 
parameter of the SK model. This fact is an important  ingredient of the Parisi 
theory, which is widely believed to be exact. We also prove that the variance of 
the free energy of the SK model converges to zero as N --* 0% i.e., the free energy 
has the self-averaging property. 
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1. I N T R O D U C T I O N  

The Sherrington-Kirkpatrick (SK) model (1~ is one of the widely accepted 
models of disordered spin systems with a random competitive interaction. 
This model is defined by the Hamiltonian 

/ ~ N = - N  1/2 Z f f i j S i S j  ( l . 1 )  
l <~i<j<~N 

where the spins $1,..., SN take values _1 (Ising spins) and the J~, 
1 < ~ i < j ~ N ,  are independent identically distributed Gaussian random 
variables with zero mean and variance j2.2 It is believed that in the ther- 
modynamic limit N ~  Go this model gives answers coinciding with those 
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which would appear in the limit of the infinite-interaction range or infinite 
dimensionality d of more realistic finite-range models, defined on the lattice 
7~d.  3 

By using the so-called replica trick, Sherrington and Kirkpatrick (1) 
found the following expression for the mean free energy in the ther- 
modynamic limit: 

/3fSK = -K2/4(  1 - q)2  _ (2 rc ) -1 /2  f In 2 ch(gql/2a) e z2/2 dz (1.2) 

q = (27z) -1/2 f th 2 (Kq~/2z) e -~2/2 dz (1.3) 

w h e r e  K 2 =  f12j2 and/3 is the inverse temperature. This expression predicts 
the phase transition into the spin-glass state at the temperature Ts=  J. 
However, this "SK solution" cannot be correct in the most interesting low- 
temperature region T <  Tf, since it does not satisfy general and important 
requirements such as the nonnegativity of the entropy and magnetic 
susceptibility, some stability conditions, etc. (3'4) 

The SK model has been considered in numerous physics papers (see 
refs. 3 and 4 and references therein), in which the rich and complex struc- 
ture of this model was discovered and studied. The physical theory 
developed contains a number of new fundamental concepts and facts which 
have no analogs in nonrandom systems and can be applied to a wide range 
of complex systems. 

One of the interesting new objects of the spin-glass theory is the 
Edwards-Anderson order parameter q, which, according to one interpreta- 
tion, is the thermodynamic limit of the second moment qN of the random 
field of the magnetization mi = (Si)H, (The symbols ( . . . ) ~ / a n d  E{.--} 
will denote respectively, the average over $1 ..... SN with the Gibbs measure 
of (1.1) and the average over J~). The conventional wisdom of statistical 
mechanics and the theory of disordered systems suggests that the random 
(due to a randomness of Jo) variable 

N 

(IN=N -1 ~ (Si)2N (1.4) 
i = 1  

should tend to a nonrandom limit and this limit should be equal to q. One 
possible formalization of this wisdom is the following: if 

qN= E{4N} E{ 2 = (Si>HN } (1.5) 

t (2) 3 For the former limit this was proved if the temperature is large enough, fiJ~ 1. 
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and 

AN=E{(ON--qN)  2 } (1.6) 

then 

lim qN=q  (1.7) 
N~:~ 

and 

lim Z~N=0 (1.8) 
N~oo 

We will call such a property the self-averaging. This property, for 
instance, is satisfied by the free energy of non-mean-field-like models 
[i.e., models that, unlike (1.1), do not contain N explicitly in their 
Hamiltonians] under fairly weak conditions on the decay of the inter- 
action (5-7) and a variety of quantities in disordered one-body theory. (8) 

However, according to the Parisi theory, (4) which is widely believed to 
be exact, the quantity ON does not have the self-averaging property. In 
particular, 

lim A N = 1/3 qZ(x) d x -  q(x) dx 
N ~  o o  

where 0~< q(x)<~ 1 is a functional order parameter of the Parisi theory. 
Since q(x) is not a constant for T <  T / = J ,  the rhs of (1.8) is strictly 
positive in this whole low-temperature region. This remarkable fact is con- 
nected in the Parisi theory with the exponentionally large number and rich 
structure of the pure equilibrium states or "valleys" for the Hamiltonian 
(1.1) for N--* oo. 

The Parisi theory of the spin-glass phase transition is fairly convincing 
and interesting from the theoretical physics point of view, but has not 
acquired the status of rigorous mathematical physics. The rigorous papers 
devoted to the study of the SK model (2't~ contain mainly the treatment 
of the high-temperature region T >  T/. Besides, some explicit bounds 
pertaining to the low-temperature region were obtained which imply the 
existence of a phase transition at T =  j.uo) In the present paper we prove 
rigorously a statement that might be considered as the statement of the 
absence of the self-averaging property of quantity (1.4). Namely, we 
show, that assuming (1.8), we come with necessity to the Sherrington- 
Kirkpatrick expression (1.2)-(1.3) for the free energy of the model. Since, 
according to above discussion (see also refs. 3 and 4), this expression 
cannot be correct for T <  J, we should conclude that qN is not a self- 
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averaging quantity. This result might be considered as rigorous support of 
the Parisi theory. 

Our method consists in performing the thermodynamic transition 
N ~ ~ step by step. We study and control changes in the respective quan- 
tities after adding the Nth spin $1 to the system of N -  1 spins $2,..., S N -  1" 
Similar arguments are already known in this field as the cavity method, ~4) 
and our approach can be considered as a rigorous version of these 
arguments. An analogous method was used by Pastur ~9) to find the 
integrated density of states of some ensembles of random matrices, 
including, in particular, the ensemble of the Gaussian matrices N 1/2Jij 
from (1.1). 

The paper is organized as follows. In Section 2 we formulate our main 
result (Theorem 1) and give its proof modulo several important technical 
statements. These statements are proved in Section 3. The Appendix con- 
tains the proof of disappearance of the variance of the free energy fN of the 
Hamiltonian (1.1) in the thermodynamic limit N ~  ~ ,  i.e., the analog of 
(1.8) for fu" Our initial intention was just to mention the validity of this 
property for the free energy, in contrast to its absence for qN. To our sur- 
prise we did not find in the literature a rigorous proof of this property. 
Moreover, the proof of the self-averaging of the free energy of the SK 
model was formulated as a problem in ref. 10. Our proof, which is valid for 
all T > 0 ,  is based on a form of the martingale ideology, also borrowed 
from the spectral theory of random matrices. (9,H) 

2. T H E  M A I N  R E S U L T S  

Denote by G(vl . . . . .  VN) = G(v) the solution of the equation 

-1/2 
d2GN 
---~v2 +GN(V)=6(o), ve~"  (2.1) 

i = l  

It is easy to show that 

G(v) = ~ dt(27rt) u/2 e ' v2/2' (2.2) 
d 

Thus, G(v) is positive, symmetric, and 

Consider now the more general Hamiltonian 
N 

H:v = I~Iu - -  N 1/4 ~ v i S i  
i = 1  

(2.3) 

(2.4) 
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where H N is given by (1.1) and v= (vl,..., VN) are random variables inde- 
pendent of the J~ and having a probability distribution with the density 
(2.2). Thus, the vi enter (2.4) as a random external field which is 
infinitesimal for N ~ ~ .  This term plays an important role in our analysis 
as a symmetry-breaking field. In particular, this term allows us to define a 
nonzero random field of local magnetization 

mi = (Si )HN,  i= 1,..., N (2.5) 

Let j~u a n d f u  be the free energies of the Hamiltonians (1.1) and (2.4): 

fu  = --(fiN) -~ In ZN, fu  = --(BIN) l ln ZN (2.6) 

where J~N and ZN are the respective partition functions. By using (2.3) and 
(2.4), it is easy to show that 

?N-- f~NdV G(v) f N ~<flU 1/4 (2.7) 

In particular, combining this bound and Theorem 2, proved in the 
Appendix, we obtain that 

Thus, adding the v term to the Hamiltonian HN, w e  do not change the free 
energy in the thermodynamic limit. This fact seems to be a natural 
necessary condition for the external field to be called a symmetry-breaking 
one. 

However, we should admit that our symmetry-breaking field is some- 
what special and unusual, not only because of the special form of the 
distribution (2.2) that will be fairly important below (see the proofs of 
Lemmas 3.2 and 3.3), but also because its strength hN=N -I/4 depends 
explicitly on N. The standard way to handle a symmetry-breaking field in 
statistical mechanics is to keep its strength h fixed during the thermo- 
dynamic limit transition and send h to zero only after performing this limit. 

Denote by EG the expectation over Ju and vi, i.e., 

Ea{ . . . }  = f  E{ . . . }  Gu(v) dv (2.9) 

Theorem 1. Let 
N 

~N=N -1 ~ S 2 ( i),-,,, 
i--1 

qu(fl)=Ea{qu}, Z J U ( f l ) = E G { [ q u - - q u ( f l ) ]  2 } (2.10) 
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Suppose that for fixed J and fl, flJ> 1, there exists e>O such that 
uniformly in fl e ( f l -  e, fl] 

lim qN(fi) > 0 (2.11) 

lim Au(f l )=0 (2.12) 
N ~ c o  

Then, for these fl and J the thermodynamic limit of the mean free 
energy exists: 

lim E a { f u } = f  (2.13) 
N ~ o o  

and coincides with the Sherrington-Kirkpatrick free energy fsK given by 
(1.2) and (1.3). 

ProoL Let us introduce the Hamiltonian 

N 

H N ( t ) = - N  ,/2 Z Y', JijSiS, 
t = 2  i<j 

N 

- ~ (N l/2JliS, t - t -N~l /4v i )g i -N- l /4v ,S  l (2.14) 
i = 2  

where 0 ~< t ~< 1. In HN(t ) the interaction of the spin S1 with all other spins 
$2,..., SN has the varying strength t e [0, 1 ]. Thus, 

where 

HN(1 ) = HN, 
N 

HN(O ) 2 =-O~NH N 14-7N ~, viSi-N-1/4vlS1 (2.15) 
2 

~N=(I__ N ,),/4; 7N=N--'/4(O~N__I)=O( N 5/4) (2.16) 

We shall see later that for all quantities of interest, the second and third 
terms in HN(O ) a r e  negligibly small. Hence, setting t = 0 ,  we obtain the 
system of N -  1 spins $2 ..... SN at the temperature 

flU = ~2fl __, fl, N--* oo (2.17) 

Set 

x(~U)(t) = Ec {m~"(t) } (2.18a) 

ml(t) = ( S, )z4N(o (2.18b) 
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By differentiation of xU(t) with respect to t and using the simple identity 

E{ Jo, (P(Jii) } = j2E{ q)'(Jo) } (2.19) 

which is valid for the Gaussian random variables Jij, E{Jij}=O, 
E{J~} = j2, we obtain 

X(nN)(t) = - - K 2 t q N  - l(flN)(~X(N))n -~- ta~ u) + tr(, m (2.20) 

where 

and 

(02x)] = 2( - x 2  + 2xl)  + 4(X 1 --  X2) (2.21) 

( ~ x ) , = 2 n ( 2 n - 1 ) ( - x , _ l - x n + l + 2 x n ) + 4 n ( x , , - x n + , ) ,  n > l  

a] N) = --2qu l(flN) K 2, a,(N) ---- 0, n > 1 (2.22a) 

r{N)_ k , - 2 F  {2n(2n -- 1 } m21n--2[(~u( t )  Jr- 2mieu(t) 
n - -  a x  ~ G  

+ m21~Cu(t)] + 4nm 2"- l[~N(t) + m~Cu(t)] 

+ N -  ~/4v~(1 -- m 2) (2.22b) 

N 

(~N( t ) = N - 1  2 
i = 2  

N 

eN( t )=U- '  Z 
i - - 2  

N 

KN(t) = N - 1  2 
i 2 

m~ - qN- ,(/7) (2.23a) 

mi(SiS1 >HN(,) -- m, qu-  1(fiN) (2.23b) 

mi(S lS i )2v ( , )_  2 m~qN_,(flN) (2.23C) 

where mi = m,(t) is defined by 
definition (2.23), the Schwartz 
we obtain the estimate 

(2.5) with HN(t ) instead of Hu .  By using the 
inequality, and the Proposi t ion of Section 3, 

Ec{ir~V)l}  . -  z 2 ~  1112 ~ N 
- ~  a ~  ,~ L ~ 4 n _ 4 J  (2.24) 

where J~N here and below denotes a quanti ty which is independent  of n, K, 
and t, and tends to zero as N---, oe. 

Consider  now the opera tor  _,i, defined by the operat ion (2.21) in the 
Hilbert  space ~ of semi-infinite sequences x = {x,}n~>~ with the norm 

I[xll 2: ~ n -1 [x~t 2 (2.25) 
n = l  
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According to Lemma 3.4 of Section 3, A is a nonnegative and selfadjoint 
operator in ) f  and according to Lemma 3.5, r (u)= {r(N)}n~> 1 belongs to 
uniformly in N--* co. Thus, we can rewrite (2.20)-(2.22) as the Cauchy 
problem in Y~: 

dx (N) 
Kqu I ( / ~ N )  tAx  (N) + ta (N) + tr (s) (2.26) 

dt 

x(N)(0) = Ea{thZn(]3N 1/4"!)1) } (2.27) 

It is easy to check that 

]rx(Nl(0)l[ 2 ~< EG{ln ch2(/~N 1vl) } (2.28) 

and that 

f 
oo 

y(N)(t) = 2n 1/2 th [gqN_l(flN) tUq-flN 1~4vile "v2(2n) l/2dix (2.29) 
oo 

is the solution of the Cauchy problem (2.26) and (2.27) with r (N)=0.  
Moreover, according to (2.24) and Lemma3.5, [Ir(N)]]--+0 as N--+~.  
Therefore, 

lim Ilx ( N ) -  y(N)ll = 0  (2.30) 
N ~ o o  

This relation implies in particular that 

qx (~ )  = X]m(1) = 

2n 1/2 = t h  [KqN_l(flu) U]e u2/2(27r)-l/2 du-F-.~N (2.31) 

where ,~N-'*0 as N--, oo. On the other hand, according to (2.10), (2.15), 
and the Proposition of Section 3, 

q,(/3)=EG N-1 E ( i )Hu( l )  = 
t = l  

= q N _ I ( f l ) + 6 N ( 1 ) + O ( N - - 1 ) = q N _ I ( f l N ) + O ( 1 ) ,  X ~ o o  (2.32) 

Hence, we can write (2.31) in the form 

qN(fl) = f 2 1/2 th [KqN (~) l,I] e u2/2(27r) 1/2 NIX 
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which implies that every limit point q of the sequence {qN(fl)} satisfies 
Eq. (1.3). According to our assumption, any such point is strictly positive. 
Since Eq. (1.3) has a unique nonzero solution, we see that the sequence 
{qN(/~)} has a limit which coincides with this solution. Thus, in the ther- 
modynamic limit the order parameter qN(fl) of (2.10) coincides with the 
order parameter considered by Sherrington and Kirkpatrick. (') Let us show 
now that under our assumptions (2.11) and (2.12) the free energy is also 
equal to the SK expression (1.2)-(1.3). 

Denote by Zx(t ) the partition function of the Hamiltonian (2.14). 
Then, by using (2.19) and taking into account the Proposition from 
Section 3, we obtain for 

Fu(t) = Ec {ln ZN(t) } (2.33) 

dFN=flN-I/ZEG{~2Jik(SISk)HN(,)} 
dt i= 

=K2tEG N ' ~ (1 - - (S ,  Sk)HN(t~ 
/ = 2  

= K2t[1 - yl(t)  q] + o(1) (2.34) 

where, according to (2.31), 

yl(t) = f th2(KqX/2ut) e-U2/2(2~) -'/2 du (2.35) 

In addition, according to (2.15) and the Proposition of Section 3, 

FN(0)=FN ,(1) -- K2/4EG ( N - l )  ' Y~ (1--(S2Sk)HN 1('~) 
k = 3  

= FN_ ,(1 ) -- K2/4(1 -- q2) + o(1 ) (2.36) 

Combining (2.34) and (2.36), we obtain the relation 

FN(1)= FN_ ,(1)-- K2 fo t[1-- y,(t) q] d t -  K2/4(1-q2) + o(1) 

which in view of (2.8) and (2.33) shows that the mean free energy 

EG{f} = - ( f i N ) - '  Ec{ln ZN} = -( f iN) ~ FN(1) 

tends to the limit 

f=K2/4 t (1- -q2) - - l /~  [ 1 - y l ( t )  q]dt (2.37) 
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Consider now the function 

~b(t) = -K2(1  - q2)/4 + [1 - y~(r)] dr 

By differentiating (2.38) and using (2.35), we find that 

~b(t) = - K 2 ( 1  - q2)/4 + K2(1 - q) t2/2 

+ f In 2 ch(Kql/2ut) e -"2/2(2x)- l/.2 du 

(2.38) 

But according to (2.37) and (2.38), f = - / 3 - 1 ~ b ( 1 ) ,  and as a result, we 
obtain formula (1.2) f o r f  

Remarks. 1. We considered the SK Hamiltonian (1.1) without an 
external field [the infinitesimal field in (2.4) played the role of a symmetry- 
breaking field). However, our method admits an extension to the case of 
the more general Hamiltonian 

N 

HN({h})=I2IN - ~ hiS, (2.39) 
i = l  

where HN is given by (1.1) and hi, i =  1 ..... N, are independent identically 
distributed random variables. In this case our results are still valid, but 
now the symbol E denotes the expectation over the Jo and h/; the argu- 
ment of In 2 ch( . . . )  and th2(-.-) in (1.2) and (1.3) now is Kql/2u+~h and 
the respective expressions contain also the integration over h with its 
distribution I~(dh). For example, Eq. (1.3) now has the form 

q = f th2(Kq 1/2 + ~h) e "2/2(2~) 1/2 #(dh) (2.40) 

Of particular interest is the case of the Gaussian hi with zero mean and the 
variance h0 z. In this case Eq. (2.40) has a unique solution, which is not zero 
if he=0 .  Therefore the condition (2.11) of Theorem 1 can be omitted, 
because the only reason to impose this condition was to guarantee the 
convergence of qN to a nonzero solution of Eq. (1.3), which fo r /~J>  1 has 
two solutions: q = 0 and q > 0. 

2. It also is not necessary to assume that the J~ have zero mean 
value, because in that case also an expression for the limit free energy was 
"obtained" by Sherrington and Kirkpatrick (1) and we can generalize our 
previous results. 
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3. The normalization factor N-1/2 in (1.1) allows us to consider other 
cases than Gaussian J,j. For instance, we can extend our results to the case 
of i.i.d. Jr that admit the estimate 

E{exp(Jot) } <~ exp(Ct 2) (2.41) 

for some C > 0 and t < to, t o > 0. An example of Jo satisfying (2.41) is given 
by any symmetrically distributed J• whose distribution has a compact 
support (e.g., Jo= 1) or, more generally, Jij for which E{J~exp(tJ~)} < ~,  
L tl ~< to. Proofs for these and more general distributions are more tedious, 
require additional arguments, and will be published elsewhere. We restrict 
ourselves here to the simplest, but fairly important case of Gaussian Jij- to 
make our results more transparent, because relations like (2.19), (3.13), 
etc., which are special to the Gaussian distribution, make the proofs 
substantially shorter. 

3. A U X I L I A R Y  F A C T S  

Lemma 3.1. 

AN(t, fi)= Ea{ [6N(t) } 2 } 

with 6N(t ) defined by (2.23) and (2.5). Then 

AN(0, /~) = AN_ ~(flN) + O(N 1/4), where 

Proof. Set 
N 

RN=YN E viSi-N-1/4vlS1, 
i=2 

Then, in view of (2.15), 

S 2 EG{( i)Hu(O)}=EG{(Si)~,N 1} 

Let AN(~) be defined by (2.10) and 

f lN=(l__ N 1)1/2 fl 

H ( U )  _ _  N2 LI N -- ~NaJN--1 ~- URN 

2 

- N  1/4( ( S i S  1 ) u - - ( S i ) u  ( $ 1 ) u ) l t  

where the symbol ( - - . ) u  denotes the Gibbs average with the Hamiltonian 
H ~  ). The integrand in the last expression is O(N -1/4) [-see (2.3) and 
(2.16)]. Thus, 

EG{ S 2 S 2 l( i)gu(o)--( i)~NHN 11}=0(N-I/4) 
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Now we need only to take into account that the Gibbs average with the 
Hamiltonian eNHN ~ at the temperature fl coincides with the Gibbs 
average with HN_ j at the temperature aNti, and the lemma is proved. 

Consider now the following Hamiltonian for the spins $2. . .  SN: 

(3.1) 

where the HN(t) is given as in (2.14), and denote by ( . . . ) + ,  the respective 
Gibbs averages. 

Lemma 3.2. Let 

N 

6~v( t )=N -~ ~ (Sk)2+,--qN--~(flN) (3.2) 

and 
) (t) = E~ { [6 + (t)J ~ } (3.3) 

where qN(fl) and fin are defined in (2.10) and (2.17). Then under condition 
(2.12) 

lim A+(t)=0 (3.4) 
N ~ o o  

uniformly in t e [0, 1 ]. 

Proof, Since 

, d a ~ . .  
~ (t) = ~J ~ (0) + fo T tt; d; (3.5) 

and according to Lemma 3.1, (3.1), and (2.15), A + ~ 0  as N ~  ~ ,  it suf- 
fices to show that the second term in the rhs of (3.5) disappears as N ~  ~ .  

Denote temporarily [fin ~ (0 ]  2 by aN and take into account that in view 
of (3.1) and (2.14) this quantity depends on t, Jl~, and v k for k = 2,..., N via 
the combinations ++_N-1/2tjlk + N-U4Vk . Then, by using (2.1) and (2,19), 
we have 

dt = t-XEa z., l k - -  

= Ij2EG{~2 d2aN~'~lkj 

I = tJ2N 1/2EG 
dvk J 

= L2tj2N -'/2E~ { [G(v) - 6(v)-I aN} [ <~ 2tJ2N - ,/2 
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Hence, the second term in (3.5) also disappears in the thermodynamic limit 
N--* ~ .  This proves the lemma. 

L e m m a  3.3. Let p+_=Z+(t)/Zu(t), where Z+(t) and Zu(t  ) a r e  

the partition functions of the Hamiltonians (3.1) and (2.14) and 
N 

aN( t )=U 1 ~, ( Sk )+ t  (Sk>_t  (3.6) 

Then 
lim Ec{[aN(t)--qN l(~N)]2 p+p_}=O 

N~ oo 

uniformly in t e [0, 1 ]. 

Proof. 

Ee{(au--qN 1)2p+p_}=EG{(crZ--q2 u ~)P+p_}  

--2qu--,EG{(au--qu 1)P+P--} (3.7) 

But according to (3.6) and the Cauchy inequality, 2 - + -  fiN ~ qN qN, where  
c]+( t )=X l y ,  u ( S i ) 2 . T h u s ,  

2 2 aN--qu--, <<-(Et+--qu--~)qN--l +(glu--qN ,)q~v 

and, in view of Lemma 3.1 and the inequalities O<~qN_ l and q+ ~< 1, we 
conclude that 

lim EG{(a~v--qu-12 ) } = 0  
N~oo 

Let us show that the second term in (3.7) also tends to zero as N--* oo. To 
this end, let us consider the expression 

f~--~ (d2FN d2FN "~'~ 
F N = E  c (3.8) 

d# o/J 

where FN(t ) is defined by (2.33). Repeating almost literally the proof of 
Lemma 3.2, we obtain [cf. (2.34)] that 

F u = dz EG dv 2 d* tJ 

=[~N-1/2 fo d'r E G -~v~ k JIi(SISi)HN( z, 
2 

' } 
2 HN(Z) 

= z d z E ~  [-(~('E)--G(v)] Z (SiSI>HN(Z) 
2 
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Thus, tFNI <~ K 2. On the other hand, 

d2FN 
-- f12N-1/2(1 _ (Si)2HN(~))  

and 

F N = ~ 2 N - ' / 2 E G  <Si>2HN(O) - ( S i ) . N ( t ) ~  

fl2N,/ZEG{6N(O) 2 + = --p+6N(t)--p2_6u(t) 

-- 2p + p [aN(t) -- qN--1 (fiN)'] } 

where we took into account that according to (2.14) and (3.1), 

p + ( t ) + p _ ( t ) = l ,  

and 

(S~)Hu(,)=p+(t)(S,)+,+p (t)(Se) , 

<"" ) !,1,=o = < ' "  ),,N(0~ 

Comparing now the two expressions obtained fbr F u, we find the estimate 

2 ]Ec {aN(t) -- qu-l(/?U)}] ~< O(N-1/2) + EG { 16N(0)l } 

+ EG {16; (t)l} + EG {16N (t)l} 

which in view of Lemmas 3.1 and 3.2 implies that the second term on the 
rhs of (3.7) also disappears in the thermodynamic limit. The proof of 
Lemma 3.3 is completed. 

P r o p o s i t i o n .  Under condition (2.12) the second moments of the 
quantities (2.23) tend to zero as N--* oo. 

Proof. By using (3.8) and the similar relations 

(Sk)uu( , )=p+--p  ( S i S k ) u u ( , ) = p + ( S k ) + t - - p _ ( S k )  , (3.9) 

we obtain for the quantity (2.23a) 

2 + 6 N = p + 6  N +p26 u + 2 p + p  (aN--qN_t) (3.10) 

where 6~v(t ) and aN(t ) are defined by (3.2) and (3.6). Thus 

EG {6~} < 3E~ {(6;, )2} + 3EG {(6; )2} + 12Eo {(aN-- qN- ~t 2} 

and according to Lemmas 3.2 and 3.3, all terms on the in rhs of this 
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inequality tend to zero as N ~  Go. We have proved (2.23a). To prove 
(2.23b) and (2.23c), we apply similar arguments to the identities 

2 + 2 + + p 2 6 +  2p ~.N=p+(~N--p26N, K--~p+6 N _ -- +p_(7 N 

which follow easily from (2.23b), (2.23c). This proves the proposition. 

Lemrna 3.4. The operator A, defined in the Hilbert space of semi- 
infinite sequences with the norm (2.25) by operation (2.21), is nonnegative 
and self-ajoint. 

Proof. Denote by Ao the operator defined on the linear manifold D 
of sequences with finitely many nonzero elements by operation (2.21). It is 
easy to check that A o can be represented in the form 

Ao=D1R*D2R 

where (DlX) ,=2nx, ,  D 2 = D l + l  , (Rx)n= x , -  x,+ l, and 
operator ajoint to R. By using this representation, we find that 

(3.11) 

R* is the 

(Aox, x ) = 2  ~ (2n+l)lx,-x,+l[2>>-O 
n = l  

and that (Aox, y )=  (x, A o y). Thus, it suffices to establish that A o is essen- 
tially self-ajoint. By general principles, (12) the deficiency indices of A 0 may 
be (0, 0) or (1, 1). To exclude the latter possibility, we should show that 
there is no solution of the equation ~x = 2x, Xo = 0, which has the finite 
norm (2.25) when 2 belongs to the resolvent set of Ao. Since Ao is non- 
negative, it suffices to prove this fact for a negative 2. Consider the solution 
P,(2)  which satisfies the conditions P0(2) = 0, P1(2) = 1. Then any solution 
{xn}~, Xo=0, of our equation has the form x,=XlPn(;t). But in view of 
(3.11) we obtain that for n~> 1 

P~(2) = 1 + (2k+ 1) -1 2 ( - 2 ) / ( 2 l )  P,(2) 
1 / = 1  

Considering this formula successively for n = 2, 3, we find that Pn(2) >/1 for 
2 < 0. Thus [[P(2)I[ = m for 2 < 0, and the lemma is proved. 

Lemma 3.5. Let 

Then 

(N) = {n2(E6 {m4(,_ ')(t) } )]/2 },~__1 

822/62/1-2-2 
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where the norm It'-" [I is defined in (2.25) and C is independent of t e [-0, 1 ] 
and N. 

ProoL According to (2.24) and (2.25), we should prove that 

Ea n3m n(t < 
n 1 

uniformly in t and N. But since 

L n3mnn<~(l-m4) 3 
n = l  

and according to (2.5), (2.14), and (3.1), 

4 ~- l _ m l > ~ l _ m l  l_[Z~v(t )_ZN(t)][Z~v( t )+Z~(t)]  1 

= 211 + Z u ( t ) / Z  + (t)] - '  

it suffices to show that 

{ [z ; ,  (t)/z# ( t ) ]  } < oo 

uniformly in t, N. By using (3.1), we have for 

e-=exp tflN -1/2 JlkSk 
k = 2  

that 

EG{<~>HN(O)<I] 1 3  = > HN(0)  

But since HN(O ) contains only the variables Jo, i , j<~N-1,  which are 
statistically independent with Jlk, k = 2,..., N, the rhs of the last inequality 
will be finite if 

k = 2  ~ = 1  

uniformly in t, N, and S~ ~), where S(k ~), ~ = 1,..., 6, are the "replicas" of the 
spins Sk, and Eo{...  } denotes the expectation with respect to the family 
{J12,'", J1N}" By the independence of the Jlk, the lhs of (3.12) is 

k = 2  c t = l  
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For the Gaussian Jlk factors in (3.13) are 

Combining (3.13) and (3.14), we obtain (3.12). This proves the lemma. 

APPENDIX  

Theorem 2. Let fN----(~N) l lnZN, where Z N is the partition 
function of the SK Hamiltonian (1.1). Then 

E{ (fN-- E{fN} ) 2 } <, Cfl2j4N -I (A.1) 

where C is an absolute constant and j2 = E{j2.}. 

ProoL Denote by Jk the family of random i.i.d, variables 
Jkl""Jkk-1. by ~ the a-algebra generated by Jk, Jk+l,..., and by 
F ~ ) =  E{ _/~-11n ZN] 4 } .  Now, r ~  ~ depends only on Jk ..... Ju, and hence 

F('N)=--fl llnZN, F(NN+II=E{--fl-llnZN} 

E{F~)[~} =F(N m), m = max(k, l) (A.2) 

Therefore, if @, = F~ ) -  --N~'(k+ 1), then 

N 

f u - E { f N } = N  1 ~ @* 
k = l  

N 

E{(fu-E{fN})2}=N -2 ~ E{@~}+2N 2 ~ E{@,@,} (A.3) 
k - - I  k < l  

But according to (A.2), E{~pk]~ } =0, 1 >k,  and since ~l is measurable 
with respect to 4 ,  we have for k < l 

E{OkOr = E{E{@kO,/o~} } =E{O,E{OkI~}} = 0  (A.4) 

Thus the second sum on the rhs of (A.3) is equal to zero and we have only 
to show that 

E{O2} ~ C <  oo (A.5) 

for some quantity C independent of k and N. To this end, consider the 
Hamiltonian H~)(t) that results from (1.1) if one replaces the family 
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s j  "tk ~ by tJik, t~[O, 1]. Then H~)(1)=HN,  H~)(O)=HN]J~:o, Jk = [ ikji=l 
and 

where ( . - . ) ,  denotes the Gibbs average with the Hamiltonian H~)(t). Let 
E,{ . - .  } be the expectation with respect to the family Jk. Then, according 
to  (A.2) ,  ~N~W(k+ 1) : Ek {F(N k) } and 

E{0~} =E{Ek{02}} =E{Ek{B2N}--E~{BN}} (a.6) 

where 

By using the identity (2.19), we find that 

Ek{B2N}=flj2N xf_ (1 -- (S iSk)  tdt (A.7) 
-1 i 

The same identity and simple, but somewhat tedious calculations give 

E,  {B2N} = E2{BN} + flZK2N-2 flcN.,(t ,, t2) tl t2 dtl dt2 ( a . 8 )  

where CN, k(tl, t2) is the double sum over 1 ~< i, j <  k of the products of the 
Gibbs averages with H~)(tl) and H~)(t2). There are nine such products, 
e.g., (SiSk)~ (Sjgk)2 (SiSl)l (SiSj)2, (SiSk)l (SjSk)2, etc. [ ( ' " ) L 2  
denotes the Gibbs average with H~)(t~,2)]. Each of them is obviously 
bounded by an absolute constant. Therefore the second term on the rhs of 
(A.8) is bounded above by the expression cflzJ4N 1, where C is an 
absolute constant. Combining this fact with (A.6), we obtain (A.5), which 
with (A.4) and (A.3) yields the assertion of Theorem 2. By developing these 
arguments, one can also prove the central limit theorem for fN" 
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